

API V2.0
Documentation

7/28/2014

2

Table of Contents
TABLE OF CONTENTS 2

REVISION HISTORY 6

OVERVIEW 7

Making A Request 7

The Sandbox 7

Rate Limiting 7

Supported Data Formats 8

Authentication 8

Common Header Fields 8

Try it! Getting Started 10

API CALLS 11

Managed DNS Fields - /dns/managed/ 11
Example XML Representation 11
Example JSON Representation 12
SINGLE DOMAIN ACTIONS 14

Searching for specific Domains by ID or name 14
Managed DNS GET- Return a domain 14
Managed DNS PUT- Update a domain 15
Managed DNS POST- Create a domain 15
Managed DNS DELETE- Delete a domain 16

MULTIDOMAIN ACTIONS 16
Managed DNS GET- Return all domains 17
Managed DNS PUT- Update multiple domains 17
Managed DNS POST- Create multiple domains 18
Managed DNS DELETE – Delete multiple domains 18

Record Fields - /dns/managed/{domain_id}/records/ 18
Example XML Representation 20
Example JSON Representations 21

Searching for specific Records by name or type 22
Managed DNS Records GET- Return records 22

3

Managed DNS Record PUT- Update a record 23
Managed DNS Record POST- Create a record 23
Managed DNS Record DELETE – Delete a record 24

Multi Record Fields - /dns/managed/{domain_id}/multi/records/ 24
Multi-Record POST- Create multiple records in a single domain 26
Multi-Record PUT – Update multiple records in a single domain 26
Multi-Record DELETE – Delete multiple records from a single domain 27

SOA Record Fields - /dns/soa/ 27
Example XML Representation 28
Example JSON Representation 28

SOA Record GET- Return SOA records 29
SOA Record PUT – Update an SOA record 29
SOA Record POST – Create an SOA record 30
SOA Record DELETE – Delete an SOA record 30

Vanity DNS Fields - /dns/vanity/ 30
Example XML Representation 31
Example JSON Representation 31

Vanity Name Server GET- Return all vanity name server configurations 31
Vanity Name Server PUT- Edit an existing vanity name server configuration 32
Vanity Name Server POST- Create a new vanity name server configuration 32
Vanity Name Server DELETE – Delete a vanity DNS configuration 32

Template Fields- /dns/template/ 32
Example XML Representation 33
Example JSON Representation 33
TEMPLATE ACTIONS 33

Template GET- Return template configurations 33
Template POST- Create a new template configuration 34
Template DELETE – Delete a template configuration 34

TEMPLATE RECORD ACTIONS 34
Template Record GET- Return template records 34
Template Record PUT- Update template records 35
Template Record POST- Create template records 35
Template Record DELETE- Delete template records 35

Account ACL Fields - /dns/transferAcl/ 36
Example XML Representation 36
Example JSON Representation 36

Transfer ACL GET- Return ACL configurations 36
Transfer ACL PUT- Update an ACL 37
Transfer ACL POST- Create a new ACL 37
Transfer ACL DELETE – Delete an ACL 37

Folder Fields - /security/folder 37

4

Folder GET- Return folder information 38
Folder PUT – Update a Folder 39
Folder POST – Create a new Folder 39
Folder DELETE – Remove a configured Folder 39

Query Usage Fields - /usageApi/queriesApi/ 39
Query Usage GET – Display all Query Usage 41
Display Query Usage for a single month 41
Query Usage for a Single Month for a Single Domain 41

Failover Fields - /monitor/ 42
DNS Failover GET- Return a DNS Failover configuration for a record 43
DNS Failover PUT- Update a DNS Failover configuration for a record 44
DNS Failover PUT - Disable DNS Failover for a Record 44

Secondary DNS Fields - /dns/secondary 44
Secondary DNS GET – Return secondary DNS domains 44
Secondary DNS PUT – Change the IP Set of a secondary domain 45
Secondary DNS POST - Create secondary DNS domains 45
Secondary DNS DELETE – Delete secondary DNS domains 46

IPSet Fields - /dns/ipSet 46
IP Set GET – Return a list of IP Sets 46
IP Set PUT - Change the name or IP’s in an IP Set 46
IP Set POST – Create a new IP Set 46
IP Set Delete – Delete an IP Set 47

RESOURCES & METHODS 47

dns/managed 47

dns/managed/{domainId} 48

dns/managed/{domainId}/records 48

dns/managed/{domainId}/records/{recordId} 49

dns/managed/{domainId}/multi/records/ 49

dns/secondary 50

dns/secondary/{domainId} 50

dns/secondary/{domainId}/records 50

dns/managed/{templateId}/records 51

5

dns/managed/{templateId}/records/{recordId} 52

usageApi/queriesApi 52

usageApi/queriesApi/{year}/{month} 52

usageApi/queriesApi/{year}/{month}/managed/{domainId} 53

usageApi/queriesApi/{year}/{month}/secondary/{domainId} 53

ERROR REPORTING 53

Generic Bad API Request Error 53

HTTP 403 - Forbidden Error 54

6

Revision History
21-May-12 .. Initial Release

07-June-12 .. Data Types & API Calls Update

25-Sept-13 ... Added Multi Create/Delete

28-July-14 Error Correction, Added Domain/Record Search

7

Overview

Making A Request

REST requests can be made via HTTPS or HTTP by using the headers, authentication,
data types, and methods specified below. The current endpoint for the API V2.0 is
available at:

http[s]://api.dnsmadeeasy.com/V2.0/

The Sandbox

The sandbox is available as a non-production environment to test API calls and any
code developed to run on top of the API. A sandbox account is completely
independent from a production account in DNS Made Easy and has different API
keys.

A sandbox account can be created at:

http://sandbox.dnsmadeeasy.com/account/new

The current endpoint for the sandbox API is available at:

http[s]://api.sandbox.dnsmadeeasy.com/V2.0/

Rate Limiting

To prevent unwanted flooding of the API system, there is a maximum number of
requests that can be sent in a given time period. This limit is 150 requests per 5
minute scrolling window. For example, 100 requests could be made in one minute,
followed by a 5 minute wait, following by 150 requests. This limit is tracked per API
key and all requests count toward this limit. Refer to the x-dnsme-requestLimit and x-
dnsme-requestsRemaining header fields for values related to this limit.

8

Supported Data Formats

The DNS Made Easy API supports both XML and JSON data formats, specified by
using the content-type and accept HTTP header fields. If no format is specified, JSON
will be used as the default.

Authentication

Authentication with the DNS Made Easy API is done using the API and Secret keys,
given on a per-account basis. The values for these keys can be found on the Config -
Account Information page once logged into your DNS Made Easy account. To make
an authenticated request, follow these steps:

• Create the string representation of the current UTC date and time in HTTP
format. Example: Sat, 12 Feb 2011 20:59:04 GMT

• Calculate the hexadecimal HMAC SHA1 hash of that string using your Secret
key as the hash key. Example:
b3502e6116a324f3cf4a8ed693d78bcee8d8fe3c

• Set the values for the request headers using your API key, the current date
and time, and the HMAC hash that you calculated. This example was created
using a Secret key of c9b5625f-9834-4ff8-baba-4ed5f32cae55:
o x-dnsme-apiKey:1c1a3c91-4770-4ce7-96f4-54c0eb0e457a
o x-dnsme-requestDate:Sat, 12 Feb 2011 20:59:04 GMT
o x-dnsme-hmac:b3502e6116a324f3cf4a8ed693d78bcee8d8fe3c

Requests must be sent shortly after these headers are generated. If too much time
has passed between when the x-dnsme-requestDate and x-dnsme-hmac strings were
created and when the request is received by the DNS Made Easy API servers, then
the request will be denied.

Requests made with invalid credentials or an invalid x-dnsme-requestDate value will
receive an HTTP 403 – Forbidden response.

Common Header Fields

9

The DNS Made Easy API includes several custom HTTP header fields that contain
information about the requests and responses that are sent. These headers fields
are:

Request Header Fields
Field name Description

x-dnsme-apiKey The API Key for your account. Refer to

the Config – Account Information menu
once logged in to find this value.

x-dnsme-requestDate Standard HTTP-formatted date. This date
is used to protect against falsified
requests played back at a future time.

x-dnsme-hmac HMAC hash of value of the x-dnsme-
requestDate field. Refer to the DNS Made
Easy REST API Documentation v2.0
Authentication section for more details
on how to generate this value.

Response Header Fields
Field name Description
x-dnsme-requestId A unique identifier of the API call that

was sent. Use the value of this header to
help identify your request for your own
purposes or when contacting DNS Made
Easy support.

x-dnsme-requestLimit Maximum number of requests that can
be sent before the rate limit is exceeded.

x-dnsmerequestsRemaining Number of requests remaining before
the rate limit is exceeded.

10

Try it! Getting Started

If you’d like to make an API request, just follow these steps. We’ve provided a
sample Perl script that can be used to make requests.

• Download and install cURL. Make sure that the cURL executable is part of your
path.

• Download and install Perl. Make sure that the Perl executable is part of your
path.

• Download the necessary Perl extensions by running the following commands:

perl -MCPAN -e "install Digest::HMAC_SHA1"
perl -MCPAN -e "install HTTP::Date"
perl -MCPAN -e "install Config::Properties"

• Download the following DNS Made Easy files and save them into the same

location:
 dnsmeapi.properties
 dnsmeapi.pl

• Put your API and Secret Keys into the dnsmeapi.properties file, the location of
these keys is specified below in the Authentication section.

• Make requests using the dnsmeapi.pl script as a wrapper around cURL! For
example:

perl dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/ -H
accept:application/xml

perl dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/12345 -X

perl dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/
dns/managed/12345/records -H accept:application/json

cURL accepts the -X option to set the HTTP method used for the request (GET is used
if no method is specified). cURL accepts the –H option to set HTTP headers for the
request.

https://support.dnsmadeeasy.com/index.php?/Knowledgebase/Article/View/125/15/dnsmeapiproperties�
https://support.dnsmadeeasy.com/index.php?/Knowledgebase/Article/View/124/15/dnsmeapipl�

11

API Calls
The following is a detailed listing of all data types used for requests and responses
with the DNS Made Easy API. Not seeing a specific example API call you are looking
for? Please contact sales@dnsmadeeasy.com to request it be added.

Managed DNS Fields - /dns/managed/

The dns/managed/ data type contains information about a single domain. The
following fields are available:

/dns/managed/
Field Name Type Description
name String The domain name
id numeric The domain ID
nameServers List of Strings Name servers assigned to the domain by

DNS Made Easy (System defined, unless
vanity is applied)

gtdEnabled boolean Indicator of whether or not this domain
uses the Global Traffic Director service

soaID numeric The ID of a custom SOA record
templateId numeric The ID of a template applied to the domain
vanityId numeric The ID of a vanity DNS configuration
transferAclId numeric The ID of an applied transfer ACL
folderId numeric The ID of a domain folder
updated numeric The number of seconds since the domain

was last updated in Epoch time
created numeric The number of seconds since the domain

was last created in Epoch time
axfrServer List of Strings The list of servers defined in an applied

AXFR ACL.
delegateNameServers List of Strings The name servers assigned to the domain

at the registrar

Example XML Representation
<domain>

mailto:sales@dnsmadeeasy.com�
http://www.epochconverter.com/�
http://www.epochconverter.com/�

12

 <created>2014-02-19T00:00:00+00:00</created>
 <delegateNameServers>ns0.dnsmadeeasy.com.</delegateNameServers>
 <delegateNameServers>ns1.dnsmadeeasy.com.</delegateNameServers>
 <delegateNameServers>ns2.dnsmadeeasy.com.</delegateNameServers>
 <delegateNameServers>ns3.dnsmadeeasy.com.</delegateNameServers>
 <delegateNameServers>ns4.dnsmadeeasy.com.</delegateNameServers>
 <folderId>12345</folderId>
 <gtdEnabled>false</gtdEnabled>
 <id>1234567</id>
 <name>example.com</name>
 <nameServers>
 <fqdn>ns0.dnsmadeeasy.com</fqdn>
 <ipv4>208.94.148.2</ipv4>
 <ipv6>2600:1800:0::1</ipv6>
 </nameServers>
 <nameServers>
 <fqdn>ns1.dnsmadeeasy.com</fqdn>
 <ipv4>208.80.124.2</ipv4>
 <ipv6>2600:1801:1::1</ipv6>
 </nameServers>
 <nameServers>
 <fqdn>ns2.dnsmadeeasy.com</fqdn>
 <ipv4>208.80.126.2</ipv4>
 <ipv6>2600:1802:2::1</ipv6>
 </nameServers>
 <nameServers>
 <fqdn>ns3.dnsmadeeasy.com</fqdn>
 <ipv4>208.80.125.2</ipv4>
 <ipv6>2600:1801:3::1</ipv6>
 </nameServers>
 <nameServers>
 <fqdn>ns4.dnsmadeeasy.com</fqdn>
 <ipv4>208.80.127.2</ipv4>
 <ipv6>2600:1802:4::1</ipv6>
 </nameServers>
 <templateId>1234</templateId>
 <updated>2014-07-10T18:02:30.051+00:00</updated>
</domain>

Example JSON Representation
{
"name":"myDomain.com",
"nameServer":[
"ns10.dnsmadeeasy.com",

13

"ns11.dnsmadeeasy.com",
"ns12.dnsmadeeasy.com",
"ns13.dnsmadeeasy.com",
"ns14.dnsmadeeasy.com",
"ns15.dnsmadeeasy.com"
],
"gtdEnabled":true}

{
 "name":"example.com",
 "id":1234567,
 "folderId":12345,
 "nameServers":[
 {
 "fqdn":"ns0.dnsmadeeasy.com",
 "ipv6":"2600:1800:0::1",
 "ipv4":"208.94.148.2"
 },
 {
 "fqdn":"ns1.dnsmadeeasy.com",
 "ipv6":"2600:1801:1::1",
 "ipv4":"208.80.124.2"
 },
 {
 "fqdn":"ns2.dnsmadeeasy.com",
 "ipv6":"2600:1802:2::1",
 "ipv4":"208.80.126.2"
 },
 {
 "fqdn":"ns3.dnsmadeeasy.com",
 "ipv6":"2600:1801:3::1",
 "ipv4":"208.80.125.2"
 },
 {
 "fqdn":"ns4.dnsmadeeasy.com",
 "ipv6":"2600:1802:4::1",
 "ipv4":"208.80.127.2"
 }],
 "gtdEnabled":false,
 "updated":1405015350051,
 "templateId":1234,
 "delegateNameServers":[
 "ns0.dnsmadeeasy.com.",
 "ns1.dnsmadeeasy.com.",
 "ns2.dnsmadeeasy.com.",

14

 "ns3.dnsmadeeasy.com.",
 "ns4.dnsmadeeasy.com"],
 "created":1392768000000
}

SINGLE DOMAIN ACTIONS
The following calls are actions for a single domain name.

Searching for specific Domains by ID or name
To return information about a single domain, you must first have its associated
domain ID.

To view a full list of all domains and domain ID’s in your account issue the call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/

You can also find a specific domain ID by domain name:
./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/managed/name?domainn
ame={domainname}

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/managed/id/{domainna
me}

Managed DNS GET- Return a domain
The following call would return configuration information of a single domain
including name server assignment and the domain ID.

Example Call – Return data about a single domain with the domain ID 999999:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/999999

Example Output:

{"name":"example.com","id":999999,"gtdEnabled":true,"nameServers":[{"i
pv4":"208.94.148.4","fqdn":"ns10.dnsmadeeasy.com","ipv6":"2600:1800:10
::1"},{"ipv4":"208.80.124.4","fqdn":"ns11.dnsmadeeasy.com","ipv6":"260
0:1801:11::1"},{"ipv4":"208.80.126.4","fqdn":"ns12.dnsmadeeasy.com","i
pv6":"2600:1802:12::1"},{"ipv4":"208.80.125.4","fqdn":"ns13.dnsmadeeas
y.com","ipv6":"2600:1801:13::1"},{"ipv4":"208.80.127.4","fqdn":"ns14.d
nsmadeeasy.com","ipv6":"2600:1802:14::1"},{"ipv4":"208.94.149.4","fqdn
":"ns15.dnsmadeeasy.com","ipv6":"2600:1800:15::1"}],"pendingActionId":

https://api.dnsmadeeasy.com/V2.0/dns/managed/999999�
http://api.dnsmadeeasy.com/V2.0/dns/managed/name?domainname=%7bdomainname%7d�
http://api.dnsmadeeasy.com/V2.0/dns/managed/name?domainname=%7bdomainname%7d�
http://api.dnsmadeeasy.com/V2.0/dns/managed/id/%7Bdomainname%7D�
http://api.dnsmadeeasy.com/V2.0/dns/managed/id/%7Bdomainname%7D�
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999�

15

0,"folderId":99999,"created":1326758400000,"delegateNameServers":[],"u
pdated":1337121058848}

Example Error: Generic API 404 Error for a badly formulated request.

Managed DNS PUT- Update a domain
This call would be used to change a configuration option of a single domain such as
assigned vanity or template.

Example Call – Changing the Vanity DNS ID to 9999 for domain ID 999999:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/999999 -X
PUT -H accept:application/json -H content-type:application/json -d
'{"vanityId":"9999"}'

Example Error:

{"error":["Invalid domain IDs specified.","Invalid Vanity NS
configuration."]}

Either an invalid domain ID or Vanity DNS ID was specified.

Managed DNS POST- Create a domain
This call would be used to create a single domain.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/ -X POST -H
accept:application/json -H content-type:application/json -d
'{"name":"example.com"}'

Example Output:

{"name":"example.com","id":99999,"folderId":1171,"gtdEnabled":false,"u
pdated":1406046257363,"nameServers":[{"fqdn":"ns0.dnsmadeeasy.com","ip
v4":"208.94.148.2","ipv6":"2600:1800:0::1"},{"fqdn":"ns1.dnsmadeeasy.c
om","ipv4":"208.80.124.2","ipv6":"2600:1801:1::1"},{"fqdn":"ns2.dnsmad
eeasy.com","ipv4":"208.80.126.2","ipv6":"2600:1802:2::1"},{"fqdn":"ns3
.dnsmadeeasy.com","ipv4":"208.80.125.2","ipv6":"2600:1801:3::1"},{"fqd
n":"ns4.dnsmadeeasy.com","ipv4":"208.80.127.2","ipv6":"2600:1802:4::1"
}],"pendingActionId":1,"processMulti":false,"activeThirdParties":[],"c
reated":1405987200000}

https://api.dnsmadeeasy.com/V2.0/dns/managed/999999�

16

Example Error:

{"error":["Domain name conflicts with existing zones."]}

The domain name already exists within a DNS Made Easy account.

Managed DNS DELETE- Delete a domain
This call would be used to delete a single domain.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/999999 -X
DELETE -H accept:application/json -H content-type:application/json -d
'{["999999"]}'

Example Error:

{"error":["Cannot delete a domain that is pending a create or delete
action."]}

The domain is already in creating or deleting status and cannot be deleted until this
pending action completes.

MULTIDOMAIN ACTIONS
The following calls would be used to perform a single action on many domains at
once, such as creation or deletion. In addition to the available fields from
/dns/managed data type, the following fields are also available for multi-domain
actions:

/dns/managed
Field Name Type Description
names List of Strings List of domain names
ids List of numbers List of domain identifiers

https://api.dnsmadeeasy.com/V2.0/dns/managed/�

17

Managed DNS GET- Return all domains
This call will return all the managed DNS domains in the account including the
domain name, domain ID, and additional GTD, folder, and date configured
information.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/

Example Output:

{"data":[{"name":"example.com","id":999999,"gtdEnabled":false,"pending
ActionId":0,"folderId":99999,"created":1336953600000,"updated":1337033
603667},{"name":"example1.com","id":999991,"gtdEnabled":true,"pendingA
ctionId":0,"folderId":99999,"created":1326758400000,"updated":13371210
58848},{"name":"example2.com","id":999992,"gtdEnabled":false,"pendingA
ctionId":0,"folderId":9999,"created":1331164800000,"updated":133122508
7653},{"name":"example3.com","id":999993,"gtdEnabled":false,"pendingAc
tionId":0,"folderId":9999,"created":1334016000000,"updated":1334080916
510}],"page":1,"totalPages":1,"totalRecords":6}

Example Error:

If the account has no domains, an empty request is returned: { }

Managed DNS PUT- Update multiple domains
This call would be used to change configuration of multiple domains.

Example Call – Changing the Vanity DNS ID to 9999 for domain ID’s 999999 and
999991:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed -X PUT -H
accept:application/json -H content-type:application/json -d
'{"ids":["999999","999991"],"vanityId":"9999"}'

Example Error:

{"error":["Invalid domain IDs specified.","Invalid Vanity NS
configuration."]}

Either an invalid domain ID or Vanity DNS ID was specified.

https://api.dnsmadeeasy.com/V2.0/dns/managed/�

18

Managed DNS POST- Create multiple domains
This call would be used to create multiple domains.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed -X POST -H
accept:application/json -H content-type:application/json -d
'{"names":["example01.com","example02.com"]}'

Example Output:

[999991,999992]

The domain ID’s for the newly created domains.

Example Error:

{"error":["Domain name conflicts with existing zones."]}

One of the domain names exists within a DNS Made Easy account already.

Managed DNS DELETE – Delete multiple domains
This call would be used to delete multiple domains with ID’s 999999 and 999991.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed -X DELETE -
H accept:application/json -H content-type:application/json -d
'[999999,999991]'

Example Output: No output on successful call

Example Error:

{"error":["Cannot delete a domain that is pending a create or delete
action."]}

Record Fields - /dns/managed/{domain_id}/records/

The record data type contains information about DNS records for a given domain.
The following fields are available:

https://api.dnsmadeeasy.com/V2.0/dns/managed�

19

/dns/managed/{domain_id}
/records/

Field Name Type Description
name string The record name
value string HTTPRED: <redirection URL>

MX: <priority> <target name>
NS: <name server>
 PTR: <target name>
SRV: <priority> <weight> <port> <target
name>
TXT: <text value>

id numeric The unique record identifier
type string The record type. Values: A, AAAA,

ANAME, CNAME, HTTPRED, MX, NS,
PTR, SRV, TXT, SPF, or SOA.

source numeric 1 if the record is the record is domain
specific, 0 if the record is part of a
template.

sourceID numeric The source domain ID of the record.
dynamicDns boolean Indicates if the record has dynamic DNS

enabled or not.
password String The per record password for a dynamic

DNS update.
ttl numeric The time to live or TTL of the record.
monitor boolean Indicates if System Monitoring is

enabled for an A record.
failover boolean Indicates if DNS Failover is enabled for

an A record.
failed boolean Indicates if an A record is in failed

status.
gtdLocation string Global Traffic Director location. Values:

DEFAULT, US_EAST, US_WEST, EUROPE
password string For A records that have dynamic DNS.

Password used to authenticate for
dynamic DNS.

description string For HTTPRED records. A description of

20

the HTTPRED record.
keywords string For HTTPRED records. Keywords

associated with the HTTPRED record.
title string For HTTPRED records. The title of the

HTTPRED record.
redirectType string For HTTPRED records. Type of

redirection performed. Values:
Hidden Frame Masked, Standard – 302,
Standard – 301

hardlink Boolean For HTTPRED records
mxLevel numeric The priority for an MX record
weight numeric The weight for an SRV record
priority numeric The priority for an SRV record
port numeric The port for an SRV record

Example XML Representation
<record>
 <dynamicDns>false</dynamicDns>
 <failed>false</failed>
 <failover>false</failover>
 <gtdLocation>DEFAULT</gtdLocation>
 <hardLink>false</hardLink>
 <id>12345678</id>
 <monitor>false</monitor>
 <name>test</name>
 <source>1</source>
 <sourceId>1234567</sourceId>
 <ttl>1800</ttl>
 <type>A</type>
 <value>1.1.1.1</value>
</record>
<record>
 <dynamicDns>false</dynamicDns>
 <failed>false</failed>
 <failover>false</failover>
 <gtdLocation>DEFAULT</gtdLocation>
 <hardLink>false</hardLink>
 <id>12345679</id>

21

 <monitor>false</monitor>
 <mxLevel>5</mxLevel>
 <name>test</name>
 <source>1</source>
 <sourceId>1234567</sourceId>
 <ttl>1800</ttl>
 <type>MX</type>
 <value>mx1.mailserver.com.</value>
</record>

Example JSON Representations
{
 "name":"test",
 "value":"1.1.1.1",
 "id":12345678,
 "type":"A",
 "source":1,
 "gtdLocation":"DEFAULT",
 "failed":false,
 "failover":false,
 "sourceId":1234567,
 "monitor":false,
 "dynamicDns":false,
 "ttl":1800,
 "hardLink":false
}
{
 "name":"test",
 "value":"mx1.mailserver.com.",
 "id":12345679,
 "type":"MX",
 "source":1,
 "gtdLocation":"DEFAULT",
 "failed":false,
 "failover":false,
 "sourceId":1234567,
 "monitor":false,
 "dynamicDns":false,
 "ttl":1800,
 "mxLevel":5,
 "hardLink":false
}

22

Searching for specific Records by name or type
To perform operations on a specific record in a domain, you must first obtain the
associated record ID for that record.

To view a full list of all records within a specific domain you would issue the call:
./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records

To search for specific record(s) by type and/or name:
./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/managed/{domainId}/r
ecords?type={recordType}

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/managed/{domainId}/r
ecords?recordName={recordName}&type={recordType}

Managed DNS Records GET- Return records
This call would display all the records in a single domain ID and returns the record
ID’s of each associated record.

Example Call – View records in domain ID 999999:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records

Example Output:

{"data":[{"name":"mail","value":"www","id":9999999,"type":"CNAME","ttl
":1800,"sourceId":999999,"failover":false,"monitor":false,"gtdLocation
":"DEFAULT","source":1,"dynamicDns":false,"failed":false,"hardLink":fa
lse},{"name":"google","value":"http://www.google.com/","id":9999991,"t
ype":"HTTPRED","ttl":1800,"sourceId":999999,"failover":false,"monitor"
:false,"title":"title","gtdLocation":"DEFAULT","redirectType":"Standar
d -
302","keywords":"keywords","description":"description","source":1,"dyn
amicDns":false,"failed":false,"hardLink":false},{"name":"www","value":
"5.5.5.5","id":9999992,"type":"A","ttl":1800,"sourceId":999999,"failov
er":false,"monitor":false,"gtdLocation":"EUROPE","source":1,"dynamicDn
s":false,"failed":false,"hardLink":false}],"page":1,"totalPages":1,"to
talRecords":3}

Example Error: Generic API 404 Error for a badly formulated request.

https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records�
http://api.dnsmadeeasy.com/V2.0/dns/managed/%7BdomainId%7D/records?type=%7brecordType%7d�
http://api.dnsmadeeasy.com/V2.0/dns/managed/%7BdomainId%7D/records?type=%7brecordType%7d�
http://api.dnsmadeeasy.com/V2.0/dns/managed/%7BdomainId%7D/records?recordName=%7brecordName%7d&type=%7brecordType%7d�
http://api.dnsmadeeasy.com/V2.0/dns/managed/%7BdomainId%7D/records?recordName=%7brecordName%7d&type=%7brecordType%7d�
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records�

23

Managed DNS Record PUT- Update a record
This call will update a record with ID 2222222 in the domain with ID 999999. The call
would change the A record mail to the IP 1.1.1.1 with a TTL of 86400 seconds.

Example Call:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/2222222/ -
X PUT -H accept:application/json -H content-type:application/json -d
'{"name":"mail","type":"A","value":"1.1.1.1","id":"2222222","gtdLocati
on":"DEFAULT","ttl":86400}'

Example Output: No output on successful call.

Example Error: Generic API 404 Error for a badly formulated request.

Managed DNS Record POST- Create a record
This call is used to create a record in a domain and will return the recordID.

Example Call – Create a record in the domain with domain ID 999999:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/ -X POST -
H accept:application/json -H content-type:application/json -d
'{"name":"test","type":"A","value":"1.1.1.1","gtdLocation":"DEFAULT","
ttl":86400}'

Example Output:

{"name":"test","value":"1.1.1.1","id":9999993,"type":"A","ttl":86400,"
sourceId":999999,"failover":false,"monitor":false,"gtdLocation":"DEFAU
LT","source":1,"dynamicDns":false,"failed":false,"hardLink":false}

Example Error:

{"error":["Record with this type (A), name (test), and value (1.1.1.1)
already exists."]}

The A record with the name and IP entered already exists.

24

Managed DNS Record DELETE – Delete a record
Delete a single DNS record a domain.

Example Call – Delete the record with recordID 1234567 from the domain with
domainID 999999:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/1234567

-X DELETE

Example Output: No output on successful call.

Example Error: Generic API 404 Error for a badly formulated request.

Multi Record Fields -
/dns/managed/{domain_id}/multi/records/

The multi record data type contains information about domain actions for multiple
records at a time. The following fields are available:

/dns/managed/{domain_id}
/multi/records/

Field Name Type Description
name string The record name
value string HTTPRED: <redirection URL>

MX: <priority> <target name>
NS: <name server>
 PTR: <target name>
SRV: <priority> <weight> <port>
<target name>
TXT: <text value>

id numeric The unique record identifier
type string The record type. Values: A, AAAA,

ANAME, CNAME, HTTPRED, MX, NS,
PTR, SRV, TXT, SPF, or SOA.

source numeric 1 if the record is the record is domain

https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/1234567�

25

specific, 0 if the record is part of a
template.

sourceID numeric The source domain ID of the record.
dynamicDns boolean Indicates if the record has dynamic

DNS enabled or not.
password string The per record password for a

dynamic DNS update.
ttl numeric The time to live or TTL of the record.
monitor boolean Indicates if System Monitoring is

enabled for an A record.
failover boolean Indicates if DNS Failover is enabled for

an A record.
failed boolean Indicates if an A record is in failed

status.
gtdLocation string Global Traffic Director location.

Values: DEFAULT, US_EAST, US_WEST,
EUROPE

password string For A records that have dynamic DNS.
Password used to authenticate for
dynamic DNS.

description string For HTTPRED records. A description of
the HTTPRED record.

keywords string For HTTPRED records. Keywords
associated with the HTTPRED record.

title string For HTTPRED records. The title of the
HTTPRED record.

redirectType string For HTTPRED records. Type of
redirection performed. Values:
Hidden Frame Masked, Standard –
302, Standard – 301

hardlink boolean For HTTPRED records
mxLevel numeric The priority for an MX record
weight numeric The weight for an SRV record
priority numeric The priority for an SRV record
port numeric The port for an SRV record

26

Multi-Record POST- Create multiple records in a single domain
This call will create multiple records under a single domain in a single call.
Example Call:

./dnsmeapi.pl
http://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/createMulti
-X POST -H accept:application/json -H content-type:application/json -d
'[{"name":"test", "type":"CNAME", "value":"google.com.",
"gtdLocation":"DEFAULT","ttl":1800}, {"name":"test1", "type":"CNAME",
"value":"google.com.", "gtdLocation":"DEFAULT","ttl":1800},
{"name":"test2", "type":"CNAME", "value":"google.com.",
"gtdLocation":"DEFAULT","ttl":1800}]'

Example Output:

[{"name":"test","value":"google.com.","id":12345678,"type":"CNAME","so
urce":1,"gtdLocation":"DEFAULT","failed":false,"failover":false,"sourc
eId":1234567,"monitor":false,"dynamicDns":false,"ttl":1800,"hardLink":
false},{"name":"test1","value":"google.com.","id":12345679,"type":"CNA
ME","source":1,"gtdLocation":"DEFAULT","failed":false,"failover":false
,"sourceId":1234567,"monitor":false,"dynamicDns":false,"ttl":1800,"har
dLink":false},{"name":"test2","value":"google.com.","id":12345670,"typ
e":"CNAME","source":1,"gtdLocation":"DEFAULT","failed":false,"failover
":false,"sourceId":1234567,"monitor":false,"dynamicDns":false,"ttl":18
00,"hardLink":false}]

The records with associated ID’s.

Example Error:

{"error":["Duplicate name and value match detected for record \"test1
google.com.\" with domain \"example.com\"."

A record already exists with this name in this domain, conflicting with creating a
CNAME of the same name.

Multi-Record PUT – Update multiple records in a single domain
This call will update multiple records for a single domain.

Example Call:

27

./dnsmeapi.pl
http://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records/updateMulti
-X PUT -H accept:application/json -H content-type:application/json -d
'[{"id":9938153, "name":"test", "type":"CNAME",
"value":"www.google.com.", "gtdLocation":"DEFAULT","ttl":1800},
{"id":9938155, "name":"test1", "type":"CNAME",
"value":"www.google.com.", "gtdLocation":"DEFAULT","ttl":1800},
{"id":9938154, "name":"test2", "type":"CNAME",
"value":"www.google.com.", "gtdLocation":"DEFAULT","ttl":1800},
{"id":9938154, "name":"test3", "type":"CNAME",
"value":"www.google.com.", "gtdLocation":"DEFAULT","ttl":1800}]'

Example Error:

{"error":["Duplicate name and value match detected for record \"test1
google.com.\" with domain \"example.com\"."

Multi-Record DELETE – Delete multiple records from a single domain
This call is used to delete multiple records from a domain.

Example Calls:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records?ids=999999
9, 9999991, 9999992, 9999993 -X DELETE

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/managed/999999/records?ids=999999
9&ids=23123123&ids=891293 -X DELETE

Example Output: No output on successful call.

SOA Record Fields - /dns/soa/

The SOA Record data type contains parameters for custom SOA records and their
configuration. The following fields are available.

/dns/soa
Field Name Type Description

28

name string SOA Record name
id numeric Identifier (system defined)
email string Contact email address
ttl numeric TTL of SOA record (in seconds)
comp string Primary name server
serial numeric Starting zone serial number
refresh numeric Zone refresh time (in seconds)
retry numeric Failed Refresh retry time (in seconds)
expire numeric Expire time of zone (in seconds)
negativeCache numeric Record not found cache (in seconds)

Example XML Representation
<data type="soa">

<comp>ns10.dnsmadeeasy.com.</comp>
<email>dns.dnsmadeeasy.com.</email>
<expire>604800</expire>
<id>1234</id>
<name>Master For Second Set</name>
<negativeCache>10800</negativeCache>
<refresh>14400</refresh>
<retry>3600</retry>
<serial>2009010102</serial>
<ttl>21600</ttl>

</data>

Example JSON Representation
{

"name":"Custom SOA",
"id":1234,
"email":"dns.dnsmadeeasy.com.",
"comp":"ns10.dnsmadeeasy.com.",
"refresh":14400,
"serial":2009010102,
"retry":3600,
"expire":604800,
"negativeCache":10800,
"ttl":21600

}

29

SOA Record GET- Return SOA records
Example Call - This call will display all custom SOA records defined for an account:
./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/soa/ -H
accept:application/json -H content-type:application/json -X GET

Example Output:
{"data":[{"name":"Master For Second
Set","id":1234,"email":"dns.dnsmadeeasy.com.","comp":"ns10.dnsmadeeasy
.com.","refresh":14400,"serial":2009010102,"retry":3600,"expire":60480
0,"negativeCache":10800,"ttl":21600},{"name":"Master for First
Set","id":1235,"email":"dns.dnsmadeeasy.com.","comp":"ns0.dnsmadeeasy.
com.","refresh":43200,"serial":2008010102,"retry":3600,"expire":120960
0,"negativeCache":180,"ttl":86400}],"page":0,"totalPages":1,"totalReco
rds":2}

Example Error: If no records exist an empty set is returned.

Example Call – Return a Single SOA with ID 1234
./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/soa/1234

SOA Record PUT – Update an SOA record
Example Call – Assigning a custom SOA to domains. This call will assign the domains
with ID’s 999999 and 999991 with the custom SOA record with ID 9999:
 ./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/ -H
accept:application/json -H content-type:application/json -X PUT -d
'{"ids":["999999","999991"], "soaId":"9999"}'

Example Call – Editing a specific SOA with SOA ID 1234
./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/soa/1234 -X PUT -d
'{"name":"My SOA
Record","id":1234,"email":"dns.dnsmadeeasy.com.","comp":"ns0.dnsmadeea
sy.com.","refresh":43200,"serial":2008010102,"retry":3600,"expire":120
9600,"negativeCache":180,"ttl":86402}'

30

SOA Record POST – Create an SOA record
Example Call - This call will create the domains example.com and example1.com and
assigned the custom SOA with ID 9999:
./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/managed/ -H
accept:application/json -H content-type:application/json -X POST -d
'{"names":["example.com","example1.com"], "soaId":"9999" }'

SOA Record DELETE – Delete an SOA record
Example Call – This call will delete an SOA record with ID 1234 (must not be applied
to any domains at the time of deletion):
./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/soa/1234 -X DELETE

Vanity DNS Fields - /dns/vanity/

The Vanity DNS data type contains parameters for vanity DNS configuration.

/dns/vanity/
Field Name Type Description
name string The identifiable name of the Vanity DNS

group
id numeric Identifier (system defined)
nameServerGroupId numeric The name server group the config is assigned
publicConfig boolean True represents a system defined rather than

user defined vanity configuration.
defaultConfig boolean Indicates if the vanity configuration is the

system default
servers string The vanity host names defined in the config
Default boolean True sets the configuration as the default
nameServerGroup string Lists the DNS Made Easy name servers the

configuration is defined for.

31

Example XML Representation
<data type="vanity">

<default>false</default>
<id>123456</id>
<name>Custom Vanity Configuration</name>
<nameServerGroup>ns0,ns1,ns2,ns3,ns4.dnsmadeeasy.com</nameServerG
roup><nameServerGroupId>1</nameServerGroupId>
<public>false</public>
<servers>ns2.example.com</servers>
<servers>ns3.example.com</servers>

</data>

Example JSON Representation
{

"name":"Custom Vanity Configuration",
"id":123456,
"nameServerGroupId":1,
"nameServerGroup":"ns0,ns1,ns2,ns3,ns4.dnsmadeeasy.com",
"servers":["ns2.example.com","ns3.example.com"],
"public":false,
"default":false

}

Vanity Name Server GET- Return all vanity name server configurations
This call will display a full list of all vanity name server groups public and private
defined within an account.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/vanity

Example Output:

{"data":[{"name":"Example
Vanity","id":9999,"nameServerGroupId":1,"public":false,"servers":["ns0
.example.com","ns1.example.com"],"default":false,"nameServerGroup":"ns
0,ns1,ns2,ns3,ns4.dnsmadeeasy.com"}
],"totalRecords":1,"totalPages":1,"page":1}

http://208.94.145.143:8080/console/dns/vanity�

32

Vanity Name Server PUT- Edit an existing vanity name server configuration
Example Call – Update an existing Vanity Name Server configuration with ID 1234:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/vanity/1234 -X PUT
-H accept:application/json -H content-type:application/json -d
'{"name":"Update
Name","id":1234,"nameServerGroupId":1,"nameServerGroup":"ns0,ns1,ns2,n
s3,ns4.dnsmadeeasy.com","servers":["ns0.example.com","ns1.example.com"
],"public":false,"default":false}'

Example Output: No output on successful call.

Vanity Name Server POST- Create a new vanity name server configuration
Example Call – Create a new vanity configuration:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/vanity/ -X POST -H
accept:application/json -H content-type:application/json -d
'{"name":"New
Vanity","nameServerGroupId":1,"nameServerGroup":"ns0,ns1,ns2,ns3,ns4.d
nsmadeeasy.com","servers":["ns2.example.com","ns3.example.com"],"publi
c":false,"default":false}'

Example Output:

{"name":"New
Vanity","id":12345,"nameServerGroupId":1,"nameServerGroup":"ns0,ns1,ns
2,ns3,ns4.dnsmadeeasy.com","servers":["ns2.example.com","ns3.example.c
om"],"public":false,"default":false}

The new vanity configuration and associated ID.

Vanity Name Server DELETE – Delete a vanity DNS configuration
Example Call – This call will delete a vanity DNS configuration with ID 1234 (must not
be applied to any domains at the time of deletion):
./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/vanity/1234 -X
DELETE

Template Fields- /dns/template/

The Template data type contains parameters for Record Set Template configuration.

33

/dns/template/
Field Name Type Description
name string Template name
id numeric Identifier (System Defined)
domainIds numeric Domain ID’s currently assigned to the template
publicTemplate boolean True represents a system defined public

template rather than user defined account
specific template.

Example XML Representation
<data type="template">

<id>12345</id>
<name>Custom Template</name>
<publicTemplate>false</publicTemplate>

</data>

Example JSON Representation
{

"name":"Custom Template",
"id":12345,
"domainIds":[],
"publicTemplate":false

}

TEMPLATE ACTIONS

Template GET- Return template configurations
Example Call - This call would return all templates public and private within the
account including:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/template/

Example Output:

{"name":"Example
Template","id":9999,"domainIds":[],"publicTemplate":false}

A full list of templates and associated ID’s.

34

Example Call – This call will return a single template by ID:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/template/12345

Example Error: Generic API 404 Error for a badly formulated request.

Template POST- Create a new template configuration
Example Call- This call will create a new public template:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/template/ -X POST -d
'{"name":"New Template","publicTemplate":false}'

Example Output:

{"name":"New
Template","id":14685,"domainIds":[],"publicTemplate":false}

The template data and associated ID.

Template DELETE – Delete a template configuration
Example Call – This call will delete a template with ID 1234:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/template/1234 -X
DELETE

Example Output – No output on successful call.

TEMPLATE RECORD ACTIONS

Template Record GET- Return template records
Example Call - This call would return all records within template ID 9999

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/
dns/template/9999/records/

Example Call - This call would return all A records within template ID 9999:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/
dns/template/9999/records?type=A

https://api.dnsmadeeasy.com/V2.0/%20dns/template/9999/records?type=A%20�
https://api.dnsmadeeasy.com/V2.0/%20dns/template/9999/records?type=A%20�

35

Example Output:

{"data":[{"name":"www","value":"1.1.1.1","id":9999999,"type":"A","sour
ce":2,"gtdLocation":"DEFAULT","ttl":1800,"sourceId":9999,"failover":fa
lse,"monitor":false,"hardLink":false,"dynamicDns":false,"failed":false
}],"page":1,"totalPages":1,"totalRecords":1}

Example Error: Generic API 404 Error for a badly formulated request.

Template Record PUT- Update template records
Example Call: This call updates a record with record ID 12345678 in template ID
123456

./dnsmeapi.pl
http://api.dnsmadeeasy.com/V2.0/dns/template/123456/records/12345678/
-X PUT -d
'{"name":"","value":"mail","id":12345678,"type":"MX","ttl":1800,"mxLev
el":10}'

Example Output – No output on successful call.

Template Record POST- Create template records
This call will create an A record within the template with the ID 9999.

Example Call:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/template/9999/records/ -X POST -H
accept:application/json -H content-type:application/json -d
'{"name":"www","type":"A","value"2.2.2.2","gtdLocation":"DEFAULT","ttl
":86400}'

Example Output:

{"name":"www","value":"2.2.2.2","id":9999999,"type":"A","ttl":86400,"s
ourceId":9999,"failover":false,"monitor":false,"gtdLocation":"DEFAULT"
,"source":2,"dynamicDns":false,"failed":false,"hardLink":false}

Example Error: Generic API 404 Error for a badly formulated request.

Template Record DELETE- Delete template records
Example Call - This call will delete the record with ID 9999999 from the template
with ID 9999:

36

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/template/9999/records?ids=9999999
-X DELETE

Account ACL Fields - /dns/transferAcl/

The Account ACL data type contains parameters for Access Control Lists defined for
the account.

/dns/transferAcl/
Field Name Type Description
name string ACL Identifiable name
id numeric Identifier (system defined)
ips numeric The IP addresses defined in the ACL

Example XML Representation
<data type="transferAcl">

<id>12345</id>
<ips>1.1.1,1</ips>
<name>Custom ACL</name>

</data>

Example JSON Representation
{

"name":"Custom ACL",
"id":12345,
"ips":["1.1.1.1"]

}

Transfer ACL GET- Return ACL configurations
Example Call- This call will display a full list of all AXFR transfer ACL’s:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/transferAcl

https://api.dnsmadeeasy.com/V2.0/dns/transferAcl�

37

Example Output:

{"data":[{"name":"TestACL","id":9999,"ips":["1.2.3.4"]}],"totalRecords
":1,"totalPages":1,"page":1}

Example Call – This call will display a single transfer ACL with ID 1234:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/transferAcl/1234/

Transfer ACL PUT- Update an ACL
Example Call – This call will update an existing transfer ACL with ID 1234, changing
the name and adding a new IP:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/transferAcl/1234/ -X
PUT -d '{"name":"Transfer ACL
Update","id":1234,"ips":["1.1.1.1",”2.2.2.2”]}'

Transfer ACL POST- Create a new ACL
Example Call – This call will create a new Transfer ACL:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/transferAcl/ -X POST
-d '{"name":"Test","ips":["3.3.3.3"]}'

Example Output:

{"name":"Test","id":1234,"ips":["3.3.3.3"]}

The ACL data with associated ID.

Transfer ACL DELETE – Delete an ACL
Example Call – This call will delete a transfer ACL with ID 1234:

./dnsmeapi.pl http://api.dnsmadeeasy.com/V2.0/dns/transferAcl/1234 -X
DELETE

Folder Fields - /security/folder

38

The Folder data type contains parameters for managing domain folders defined in
the account.

/security/folder/
Field Name Type Description
value numeric Identifier (system defined)
label string The name of the folder
/security/folder/<Folder ID>
name string The name of the folder
id numeric The ID of the folder
Domains List of strings A list of the primary domain ID’s

assigned to the folder
secondaries List of strings A list of the secondary domain ID’s

assigned to the folder
folderPermissions List of strings A list of the permissions for the

folder
defaultFolder boolean Indicator of the folder being

marked as Default.

Folder GET- Return folder information
Example Call - This call will display a full list of all folders defined in the account.

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/security/folder

Example Output:

[{"value":99999,"label":"Default"},{"value":99991,"label":"Folder1"}]

A list of all folders and associated ID’s.

Example Call- This call will display information about a single folder including
domains contained within it by ID:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/security/folder/12345

Example Output:

{"name":"Folder1","id":12345,"domains":[12345678,12345679],"secondarie
s":[],"folderPermissions":[{"permission":0,"folderId":12345,"groupId":
11111,"folderName":"Folder1","groupName":"Group1"},{"permission":0,"fo

https://api.dnsmadeeasy.com/V2.0/security/folder�
https://api.dnsmadeeasy.com/V2.0/security/folder/12345�

39

lderId":12345,"groupId":22222,"folderName":"Folder1","groupName":"Defa
ult"}],"defaultFolder":true}

Folder PUT – Update a Folder
Example Call – This call will update a folder changing its name:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/security/folder/12345 -
X PUT -d '{"name":"New Folder
Update","id":12345,"defaultFolder":true}'

Example Output: No output on successful call.

Folder POST – Create a new Folder
Example Call – The following call creates a new folder adding the domain with ID
1234567 to the folder:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/security/folder/ -X
POST -d '{"name":"New Folder
Create","domains":[1234567],"defaultFolder":false}'

Example Output:

{"name":"New Folder
Create","id":93710,"domains":[1442922],"secondaries":[],"folderPermiss
ions":[{"folderId":93710,"folderName":"New Folder
Create"}],"defaultFolder":false}

The created folder with associated ID.

Folder DELETE – Remove a configured Folder
Example Call – Delete a Folder with ID 12345:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/security/folder/12345 -
X DELETE

Example Output – No output on successful call.

Query Usage Fields - /usageApi/queriesApi/

40

The query usage data type contains information for account query usage by month,
day, domain, or per month per domain.

/usageApi/queriesApi/
Field Name Type Description
id numeric identifier
total numeric Query total for the specified

day/month/year
month numeric Month of the year
day numeric Day of the month
year numeric Year
accountId numeric Account identifier
primaryCount numeric Count of primary domains
primaryTotal numeric Query count total for primary domains
secondaryCount numeric Count of secondary domains
secondaryTotal numeric Query count total for secondary domains

Example XML Representation:

<queryUsage>
 <total>17372</total>
 <month>12</month>
 <year>2011<year>
 <accountId>99999</accountId>
</queryUsage>

Example JSON Representation:

[{

"id":null,
"total":1712,
"month":9,
"year":2011,
"day":null,
"accountId":99999,
"primaryCount":0,
"primaryTotal":0,
"secondaryCount":0,
"secondaryTotal":0

41

},
{

"id":null,
"total":2386,
"month":10,
"year":2011,
"day":null,
"accountId":99999,
"primaryCount":0,
"primaryTotal":0,
"secondaryCount":0,
"secondaryTotal":0

}]

Query Usage GET – Display all Query Usage
This call will display a full report of query traffic within the account for all months
and all domains.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/usageApi/queriesApi

Display Query Usage for a single month
This call will display query usage for April of 2012 for all domains.

Example Call:

./dnsmeapi.pl https://
api.dnsmadeeasy.com/V2.0/usageApi/queriesApi/2012/4

Query Usage for a Single Month for a Single Domain
This call will display query usage for April of 2012 for the domain with ID 999999.

Example Call:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/usageApi/queriesApi/2012/4/managed/99999
9

https://api.dnsmadeeasy.com/V2.0/usageApi/queriesApi�
https://api.dnsmadeeasy.com/V2.0/usageApi/queriesApi/2012/4/managed/999999�
https://api.dnsmadeeasy.com/V2.0/usageApi/queriesApi/2012/4/managed/999999�

42

Failover Fields - /monitor/

The Failover data type contains parameters for DNS Failover and System Monitoring
configuration.

/monitor/
Field Name Type Description
monitor boolean True indicates System Monitoring Enabled
recordId numeric The record of ID is the record with failover

configured
systemDescription string The system description configured for the

failover event notification.
maxEmails numeric The number of emails sent to the contact for

an outage.
sensitivity numeric The number of checks placed against the

primary IP before a Failover event occurs.
List of Sensitivity ID’s:
Low (slower failover) = 8
Medium = 5
High = 3

protocolId numeric The protocol for DNS Failover to monitor on.
List of Protocol IDs:
TCP = 1
UDP = 2
HTTP = 3
DNS = 4
SMTP = 5
HTTPS = 6

port numeric The port for DNS Failover to monitor on the
specified protocol.

failover boolean True indicates DNS Failover Enabled
autoFailover boolean True indicates the failback to the primary IP

address is a manual process. False indicates

43

the failback to the primary IP is an automatic
process.

ip1 numeric The primary IP address
ip2 numeric The secondary IP address
ip3 numeric The tertiary IP address
ip4 numeric The quaternary IP address
ip5 numeric The quinary IP address
Ip1Failed numeric Indicates if IP is currently in failed status and

how many times it has failed.
Ip2Failed numeric Indicates if IP is currently in failed status and

how many times it has failed.
Ip3Failed numeric Indicates if IP is currently in failed status and

how many times it has failed.
Ip4Failed numeric Indicates if IP is currently in failed status and

how many times it has failed.
Ip5Failed numeric Indicates if IP is currently in failed status and

how many times it has failed.
source numeric 1 indicates the record is part of the domain, 0

indicates the record is part of a template
sourceId numeric The source ID of the domain or template for

the record.
contactListId numeric The ID of the contact list for system

monitoring notifications
httpFqdn string The FQDN to monitor for HTTP or HTTPS

checks.
httpFile string The file to query for for HTTP or HTTPS checks.
httpQueryString string The string to query for for HTTP or HTTPS

checks.

DNS Failover GET- Return a DNS Failover configuration for a record
This call will display a DNS Failover for a record with ID 1234567.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/monitor/1234567 -X GET

Example Output:

44

{"port":80,"source":1,"failover":true,"ip1":"1.1.1.1","ip2":"2.2.2.2",
"protocolId":3,"sourceId":1046205,"monitor":true,"sensitivity":5,"syst
emDescription":"Test","maxEmails":1,"ip1Failed":0,"ip2Failed":0,"ip3Fa
iled":0,"ip4Failed":0,"ip5Failed":0,"recordId":1234567,"autoFailover":
false}

DNS Failover PUT- Update a DNS Failover configuration for a record
This call will update (or create initially) a DNS Failover configuration for a record with
ID 1234567.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/monitor/1234567 -X PUT
-d
'{"port":8080,"failover":true,"ip1":"1.1.1.1","ip2":"2.2.2.2","protoco
lId":3,"monitor":true,"sensitivity":5,"systemDescription":"Test","maxE
mails":1,"autoFailover":false}'

DNS Failover PUT - Disable DNS Failover for a Record
Example Call – This call will disable DNS Failover for a record with ID 1234567:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/monitor/1234567 -X PUT
-d '{"port":81,"failover":false,"monitor":false,"sensitivity":5}'

Secondary DNS Fields - /dns/secondary
Secondary DNS GET – Return secondary DNS domains
Example Call - This call will return all secondary DNS domains configured in the
account:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary

Example Call – This call will return the secondary DNS domain with ID 1234567:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary/1234567

Example Output:

https://api.dnsmadeeasy.com/V2.0/dns/secondary�
https://api.dnsmadeeasy.com/V2.0/dns/secondary/1234567�

45

{"name":"example.com","id":1234567,"folderId":12345,"nameServers":[{"f
qdn":"ns5.dnsmadeeasy.com","ipv6":"2600:1800:5::1","ipv4":"208.94.148.
13"},{"fqdn":"ns6.dnsmadeeasy.com","ipv6":"2600:1801:6::1","ipv4":"208
.80.124.13"},{"fqdn":"ns7.dnsmadeeasy.com","ipv6":"2600:1802:7::1","ip
v4":"208.80.126.13"}],"nameServerGroupId":100,"pendingActionId":0,"gtd
Enabled":false,"updated":1395422608376,"ipSet":{"name":"IP Set
12345","id":12345,"ips":["2.2.2.2"]},"ipSetId":12345,"created":1395360
000000}

Secondary DNS PUT – Change the IP Set of a secondary domain
This call will update the secondary domains with ID’s 123456 and 123457 assigning
the IP Set with ID 99999.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary -X PUT -H
accept:application/json -H content-type:application/json -d
'{"ids":["123456","123457"],"ipSetId":"99999"}'

Example Output: No output on successful call.

Example Call – Change the IP Set of a single secondary domain with ID 123456:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary/123456 -X
PUT -H accept:application/json -H content-type:application/json -d
'{"ipSetId":"12345","folderId":11111}'

Secondary DNS POST - Create secondary DNS domains
This call will create domains under secondary DNS management with an assigned IP
Set. An IP Set must be assigned at creation.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary -X POST -
H accept:application/json -H content-type:application/json -d
'{"names":["example.com","example1.com"],"ipSetId":"99999"}'

Example Output: The created domain ID’s

[99999,99991]

46

Secondary DNS DELETE – Delete secondary DNS domains
This call will delete a secondary domain with ID 123456.

Example Call:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary/123456 -X
DELETE

Example Output: No output on successful call.

IPSet Fields - /dns/ipSet
IP Set GET – Return a list of IP Sets
Example Call - This call will return a list of secondary IP Sets:

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet -X
GET

Example Output:

{"data":[{"name":"Master
Set","id":12345,"ips":["2.2.2.2"]},{"name":"Second Master
Set","id":12346,"ips":["1.1.1.1"]}],"page":1,"totalPages":1,"totalReco
rds":2}

Example Call – Return a single IP Set with ID 12345:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet/12345

IP Set PUT - Change the name or IP’s in an IP Set

Example Call – Update IP Set 12345 to edit the name and IP:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet/12345/ -X PUT -d
'{"name":"IP Set Update","id":12345,"ips":["2.2.2.1"]}'

IP Set POST – Create a new IP Set
Example Call - This call will create a secondary DNS IP Set:

https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet/12345�

47

./dnsmeapi.pl https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet -X
POST -H accept:application/json -H content-type:application/json -d
'{"name":"IP New IP Set","ips":["1.1.1.1"]}'

Example Output:

{"name":"New IP Set","id":12345,"ips":["1.1.1.1"]}

IP Set Delete – Delete an IP Set
Example Call- Delete an IP Set with ID 12345:

./dnsmeapi.pl
https://api.dnsmadeeasy.com/V2.0/dns/secondary/ipSet/11341/ -X DELETE

Example Error:

{"error":["IP set is currently in use and cannot be deleted."]}

The IP Set is currently assigned to a secondary DNS domain and must be removed
prior to deletion.

Resources & Methods

The following resources and methods are available with the DNS Made Easy API:

/dns/managed – operate on multiple domains for your account
Method HTTP Status Codes Description
GET 200 – OK Returns a list of all domain names for your

account.
DELETE 200 – OK Deletes all domains for your account
PUT 200 – OK Updates multiple domains based on the

identifiers in the ids field. The following values
can be updated for all domains provided in the
list:

• Global Traffic Director (Boolean)

48

• Applied Template (numeric ID)
• Vanity NS Config (numeric ID)
• Custom SOA Record (numeric ID)
• Zone Transfer (numeric ID)
• Folder (numeric ID)

POST 201 – OK Creates multiple domains based on a list of
names provided within a MultiDomain object.

/dns/managed/{domainId} – operate on a single domain
Method HTTP Status Codes Description
GET 200 – OK Returns the domain object representation of

the specified domain.
DELETE 200 – OK

404 – specified domain
name is not found

Deletes the specified domain
WARNING: This is irreversible!

PUT 200 – OK Updates a domains based on the domainId
identifier in the path. Pass in a Domain object
in XML or JSON with the new values.

/dns/managed/{domainId}/records – operate on multiple records for one
domain

Method HTTP Status Codes Description
GET 200 – OK Returns the record object representation of

the records for the specified domain. The
following are URL parameters that may be
added to determine the data returned:

• type – Record type. Values: A, AAAA,
CNAME, HTTPRED, MX, NS, PTR, SRV,
TXT

• rows – Number of rows returns
• page – The page number of records,

based on the number of rows returned
DELETE 200 – OK Deletes the specified records using a list of

record identifiers provided in XML or JSON
format for the given template.
WARNING: This is irreversible!

49

POST 201 – OK Creates a series of records for the given
domain using the list of record information
provided in XML or JSON format

/dns/managed/{domainId}/records/{recordId} – operate on a record
in a domain
Method HTTP Status Codes Description
GET 200 – OK Returns the record object

representation of the
specified domain.

DELETE 200 – OK
404 – specified record
name and type is not
found

Deletes the specified
record
WARNING: This is
irreversible!

PUT 200 – OK Updates a record based on
the recordId identifier in
the path. Pass in a record
object in XML or JSON with
the new values.

/dns/managed/{domainId}/multi/records/ – operate on a multiple
records in a domain
Method HTTP Status Codes Description
GET 200 – OK Returns the record object

representations
DELETE 200 – OK

404 – specified record
name and type is not
found

Deletes the specified
records
WARNING: This is
irreversible!

PUT 200 – OK Updates records based on
the recordId identifiers in
the path. Pass in record
objects in XML or JSON
with the new values.

POST 201 – OK Creates a series of records
for the given domain using

50

the list of record
information provided in
XML or JSON format

/dns/secondary – operate on multiple secondary domains for your account
Method HTTP Status Codes Description
GET 200 – OK Returns a list of all domain names for your

account.
DELETE 200 – OK Deletes all domains for your account
PUT 200 – OK Updates multiple domains based on the

identifiers in the ids field. The following values
can be updated for all domains provided in the
list:

• Global Traffic Director
• Applied Template
• Vanity NS Config
• Custom SOA Record
• Zone Transfer
• Folder

POST 201 – OK Creates multiple domains based on a list of
names provided within a MultiDomain object.

/dns/secondary/{domainId} – operate on a single secondary domain
Method HTTP Status Codes Description
GET 200 – OK Returns the domain object representation of

the specified domain.
DELETE 200 – OK

404 – specified domain
name is not found

Deletes the specified domain
WARNING: This is irreversible!

PUT 200 – OK Updates a domains based on the domainId
identifier in the path. Pass in a Domain object
in XML or JSON with the new values.

/dns/secondary/{domainId}/records – operate on multiple records for

51

one secondary domain
Method HTTP Status Codes Description
GET 200 – OK Returns the record object representation of

the records for the specified domain. The
following are URL parameters that may be
added to determine the data returned:

• type – Record type. Values: A, AAAA,
CNAME, HTTPRED, MX, NS, PTR, SRV,
TXT

• rows – Number of rows returns
• page – The page number of records,

based on the number of rows returned
DELETE 200 – OK Deletes the specified records using a list of

record identifiers provided in XML or JSON
format for the given template.
WARNING: This is irreversible!

POST 201 – OK Creates a series of records for the given
domain using the list of record information
provided in XML or JSON format

/dns/managed/{templateId}/records – operate on multiple records for
one template

Method HTTP Status Codes Description
GET 200 – OK Returns record object representations of the

records for the specified template. The
following are URL parameters that may be
added to determine the data returned:

• type – Record type. Values: A, AAAA,
CNAME, HTTPRED, MX, NS, PTR, SRV,
TXT

• rows – Number of rows returned
• page – The page number of records,

based on the number of rows returned
DELETE 200 – OK

404 – specified domain
name is not found

Deletes the specified records using a list of
record identifiers provided in XML or JSON
format for the given template.
WARNING: This is irreversible and affects the

52

records for any domain associated with the
given template!

PUT 200 - OK Replaces the current set of records for a
template using the provided list of records
provided in XML or JSON format for the given
template.
WARNING: This is irreversible and affects the
records for any domain associated with the
given template!

POST 201 – OK Creates a record for the given template using
the record information provided in XML or
JSON format

/dns/managed/{templateId}/records/{recordId} – operate on one
record for one template

Method HTTP Status Codes Description
DELETE 200 – OK

404 – specified domain
name is not found

Deletes the specified record for the given
template.
WARNING: This is irreversible and affects the
records for any domain associated with the
given template!

PUT 200 – OK Updates a record for the given template using
the record information provided in XML or
JSON format

/usageApi/queriesApi – get account usage information by year and month
Method HTTP Status Codes Description
GET 200 – OK Returns a list of QueryUsage objects.

/usageApi/queriesApi/{year}/{month} – get account usage information
for a given year and month

Method HTTP Status Codes Description

53

GET 200 – OK Returns a list of QueryUsage objects.

/usageApi/queriesApi/{year}/{month}/managed/{domainId} –
get usage information for a given year and month for one domain

Method HTTP Status Codes Description
GET 200 – OK Returns a list of QueryUsage objects.

/usageApi/queriesApi/{year}/{month}/secondary/{domainId} –
get usage information for a given year and month for one secondary domain

Method HTTP Status Codes Description
GET 200 – OK Returns a list of QueryUsage objects.

Error Reporting
Generic Bad API Request Error

This is a generic error response code which indicates an error in the request issued,
typically formatting or syntax related.

<html><head><title>Apache Tomcat/7.0.12 - Error
report</title><style><!--H1 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-
family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:14px;} BODY
{font-family:Tahoma,Arial,sans-serif;color:black;background-
color:white;} B {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;} P {font-
family:Tahoma,Arial,sans-serif;background:white;color:black;font-
size:12px;}A {color : black;}A.name {color : black;}HR {color :
#525D76;}--></style> </head><body><h1>HTTP Status 404 - Not
Found</h1><HR size="1" noshade="noshade"><p>type Status
report</p><p>message <u>Not Found</u></p><p>description
<u>The requested resource (Not Found) is not available.</u></p><HR
size="1" noshade="noshade"><h3>Apache Tomcat/7.0.12</h3></body></html>

54

HTTP 403 - Forbidden Error

Requests made with invalid credentials or an invalid x-dnsme-requestDate value will
receive an HTTP 403 – Forbidden response.

Every request sent using the API includes a request date header (set by your
computers current time). An example would be:

> x-dnsme-requestDate:Tue, 01 Jan 2013 01:10:17 GMT

DNS Made Easy responds with a header that includes a Date (set by our globally
synchronized clocks). An example would be:

< Date: Tue, 01 Jan 2013 01:10:17 GMT

If the date/time of the system issuing the API calls is 30 seconds or more off from the
API servers date/time this will cause this error. The system time of the server issuing
the API calls should be set correctly to prevent this.

Here is a full example that shows this:

./dnsmeapi.pl -v
http://api.dnsmadeeasy.com/V2.0/dns/managed/123456/records -X GET

* About to connect() to api.dnsmadeeasy.com port 80 (#0)

* Trying 208.94.147.111... connected

* Connected to api.dnsmadeeasy.com (208.94.147.111) port 80 (#0)

> GET /V2.0/dns/managed/1234567/records HTTP/1.1

> User-Agent: curl

> Host: api.dnsmadeeasy.com

> Accept: */*

> x-dnsme-apiKey:*********************************

> x-dnsme-hmac:**********************************

> x-dnsme-requestDate:Fri, 25 Jul 2014 12:37:47 GMT

>

55

< HTTP/1.1 200 OK

< Server: Apache-Coyote/1.1

< x-dnsme-requestId: *******************************

< x-dnsme-requestsRemaining: 148

< x-dnsme-requestLimit: 150

< Set-Cookie: ***

< Content-Type: application/json

< Transfer-Encoding: chunked

< Date: Fri, 25 Jul 2014 12:37:47 GMT

<

* Connection #0 to host api.dnsmadeeasy.com left intact

* Closing connection #0

{"data":[{"name":"","value":"1.1.1.1","id":15562953,"type":"A","source
":1,"gtdLocation":"DEFAULT","failed":false,"failover":false,"sourceId"
:1234567,"monitor":false,"dynamicDns":false,"ttl":3600,"hardLink":fals
e}],"page":0,"totalPages":1,"totalRecords":1}

	Table of Contents
	Revision History
	Overview
	Making A Request
	The Sandbox
	Rate Limiting
	Supported Data Formats
	Authentication
	Common Header Fields
	Try it! Getting Started

	API Calls
	Managed DNS Fields - /dns/managed/
	Example XML Representation
	Example JSON Representation
	SINGLE DOMAIN ACTIONS
	Searching for specific Domains by ID or name
	Managed DNS GET- Return a domain
	Managed DNS PUT- Update a domain
	Managed DNS POST- Create a domain
	Managed DNS DELETE- Delete a domain

	MULTIDOMAIN ACTIONS
	Managed DNS GET- Return all domains
	Managed DNS PUT- Update multiple domains
	Managed DNS POST- Create multiple domains
	Managed DNS DELETE – Delete multiple domains

	Record Fields - /dns/managed/{domain_id}/records/
	Example XML Representation
	Example JSON Representations
	Searching for specific Records by name or type
	Managed DNS Records GET- Return records
	Managed DNS Record PUT- Update a record
	Managed DNS Record POST- Create a record
	Managed DNS Record DELETE – Delete a record

	Multi Record Fields - /dns/managed/{domain_id}/multi/records/
	Multi-Record POST- Create multiple records in a single domain
	Multi-Record PUT – Update multiple records in a single domain
	Multi-Record DELETE – Delete multiple records from a single domain

	SOA Record Fields - /dns/soa/
	Example XML Representation
	Example JSON Representation
	SOA Record GET- Return SOA records
	SOA Record PUT – Update an SOA record
	SOA Record POST – Create an SOA record
	SOA Record DELETE – Delete an SOA record

	Vanity DNS Fields - /dns/vanity/
	Example XML Representation
	Example JSON Representation
	Vanity Name Server GET- Return all vanity name server configurations
	Vanity Name Server PUT- Edit an existing vanity name server configuration
	Vanity Name Server POST- Create a new vanity name server configuration
	Vanity Name Server DELETE – Delete a vanity DNS configuration

	Template Fields- /dns/template/
	Example XML Representation
	Example JSON Representation
	TEMPLATE ACTIONS
	Template GET- Return template configurations
	Template POST- Create a new template configuration
	Template DELETE – Delete a template configuration

	TEMPLATE RECORD ACTIONS
	Template Record GET- Return template records
	Template Record PUT- Update template records
	Template Record POST- Create template records
	Template Record DELETE- Delete template records

	Account ACL Fields - /dns/transferAcl/
	Example XML Representation
	Example JSON Representation
	Transfer ACL GET- Return ACL configurations
	Transfer ACL PUT- Update an ACL
	Transfer ACL POST- Create a new ACL
	Transfer ACL DELETE – Delete an ACL

	Folder Fields - /security/folder
	Folder GET- Return folder information
	Folder PUT – Update a Folder
	Folder POST – Create a new Folder
	Folder DELETE – Remove a configured Folder

	Query Usage Fields - /usageApi/queriesApi/
	Query Usage GET – Display all Query Usage
	Display Query Usage for a single month
	Query Usage for a Single Month for a Single Domain

	Failover Fields - /monitor/
	DNS Failover GET- Return a DNS Failover configuration for a record
	DNS Failover PUT- Update a DNS Failover configuration for a record
	DNS Failover PUT - Disable DNS Failover for a Record

	Secondary DNS Fields - /dns/secondary
	Secondary DNS GET – Return secondary DNS domains
	Secondary DNS PUT – Change the IP Set of a secondary domain
	Secondary DNS POST - Create secondary DNS domains
	Secondary DNS DELETE – Delete secondary DNS domains

	IPSet Fields - /dns/ipSet
	IP Set GET – Return a list of IP Sets
	IP Set PUT - Change the name or IP’s in an IP Set
	IP Set POST – Create a new IP Set
	IP Set Delete – Delete an IP Set

	Resources & Methods
	Error Reporting
	Generic Bad API Request Error
	HTTP 403 - Forbidden Error

